

Unstructured Data Analytics for Policy

Lecture 5: Manifold learning

George Chen

(Last Time) Manifold Learning

The dataset here is clearly 3D

 But when we zoom in a lot on any point, around the point it looks like a flat 2D sheet!

Another example: Earth is approximately a 3D sphere, but zooming a lot on any point, around the point it's approximately a 2D sheet

In general: if we have **d**-dimensional data where when you zoom in a lot, the data dimensionality is smaller than **d**, then the lower-dimensional object is called a **manifold**

- We have the data's high-dim. coordinates, but we want to find the low-dim. coordinates (on the manifold) → this is **manifold learning**
- Manifold learning is *nonlinear* whereas PCA is linear (this will make more sense after we see code demos)

Image source: "Head Pose Estimation via Manifold Learning" (Wang et al 2017)

Do Data Actually Live on Manifolds?

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

Do Data Actually Live on Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/wordembeddings-994x675.png

Do Data Actually Live on Manifolds?

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 2015.

There are many manifold learning methods

We begin with one that's easy to describe (but it often doesn't work well in practice...)

Manifold Learning with Isomap

Step 3: It turns out that given all the distances between pairs of points, we can compute what the low-dimensional points should be (the algorithm for this is called *multidimensional scaling*)

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	A	В	С	D	E
А	0				
В		0			
С			0		
D				0	
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5			
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	A	В	С	D	E
А	0	5	8		
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	A	В	С	D	E
А	0	5	8	13	
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В		0	5	10	
С			0	5	
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	A	В	С	D	E
А	0	5	8	13	16
В		0	5	10	13
С			0	5	
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	A	В	С	D	Е
А	0	5	8	13	16
В		0	5	10	13
С			0	5	8
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	A	В	С	D	E
A	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В	- 5 multio	This mat <i>dimensio</i>	trix gets Inal scali	fed into	o et ID
С	8	version	of A, B,	C, D, E	8
D	¹³ T	he solut	ion is no	ot uniqu	e! 5
E	16	13	8	5	0

High-dimensional land

А В С Ε \square А В С \square Ε

Low-dimensional land

	Α'	Β'	C'	D'	E'
A'					
Β'					
C'					
D'					
E'					

High-dimensional land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

	A'	Β'	C'	D'	E'
A'	0				
Β'		0			
C'			0		
D'				0	
E'					0

High-dimensional land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

	A'	Β'	C'	D'	E'
A'	0	4			
В'		0			
C'			0		
D'				0	
E'					0

High-dimensional land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

	A'	Β'	C'	D'	E'
A'	0	4	5		
Β'		0			
C'			0		
D'				0	
E'					0

High-dimensional land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

	A'	B'	C'	D'	E'
A'	0	4	5	I	
Β'		0			
C'			0		
D'				0	
E'					0

High-dimensional land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

	A'	B'	C'	D'	E'
A'	0	4	5	I	3
Β'		0			
C'			0		
D'				0	
E'					0

High-dimensional land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

	A'	Β'	C'	D'	E'
A'	0	4	5	I	3
Β'		0	I	5	
C'			0	6	2
D'				0	4
E'					0

and the second second	and the second	1 I I I I I I I I I I I I I I I I I I I
High-o	dimensiona	al land

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

Low-dimensional land

Suppose we have a guess for where the low-dimensional points are

	A'	Β'	C'	D'	E'
A'	0	4	5	I	3
Β'	4	0	I	5	
C'	5	I	0	6	2
D'	I	5	6	0	4
E'	3	I	2	4	0

MDS moves the low-dim. points to make the 2 tables as close as possible

Isomap

Demo

3D Swiss Roll Example

Key idea: true distance on manifold is the blue line

We're approximating the blue line with the red line (poor choice of # nearest neighbors can make approximation bad)

Joshua B.Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000.

Some Observations on Isomap

In general: try different parameters for nearest neighbor graph construction when using Isomap + visualize

t-SNE (t-distributed stochastic neighbor embedding)

High-level t-SNE Idea

• Don't use deterministic definition of which points are neighbors

t-SNE

Technical details are in separate slides (posted on webpage)

t-SNE Parameters...

In practice, often people initialize with PCA

Manifold Learning with t-SNE

Demo

t-SNE Interpretation

https://distill.pub/2016/misread-tsne/

Dimensionality Reduction for Visualization

- There are many methods (I've posted a link on the course webpage to a scikit-learn example using ~10 methods)
- PCA is very well-understood; the new axes can be interpreted
- Nonlinear dimensionality reduction (manifold learning): new axes may not really be all that interpretable
- Practice advice for visualization: try PCA first, and if that doesn't work, try t-SNE and then possibly other manifold learning methods
- If you have good reason to believe that only certain features matter, of course you could restrict your analysis to those!